RADIO-IMMUNOTHERAPY
IN
LYMPHOMAS

Dr Venkatesh Rangarajan
Professor & Head
Department of Nuclear Medicine
Tata Memorial centre
Outline

- What is radio-immunotherapy (RIT)?
- Why RIT?
- Clinical indications for RIT
- Work up
- Treatment options
- Evidence
Non Hodgkin's Lymphoma

NHL is divided into 2 general prognostic groups:

<table>
<thead>
<tr>
<th>Indolent lymphomas</th>
<th>Aggressive lymphomas</th>
</tr>
</thead>
<tbody>
<tr>
<td>v small lymphocytic lymphoma</td>
<td>v Diffuse large-cell Lymphoma</td>
</tr>
<tr>
<td>v Marginal zone L (MALT)</td>
<td>v Mantle cell lymphoma</td>
</tr>
<tr>
<td>v Lymphoplasmacytic lymphoma</td>
<td>v Burkitt's lymphoma</td>
</tr>
<tr>
<td>v Follicular Lymphoma</td>
<td>v Precursor B-cell lymphoma</td>
</tr>
</tbody>
</table>
Comparison of Indolent and Aggressive NHL

<table>
<thead>
<tr>
<th></th>
<th>Indolent NHL</th>
<th>Aggressive NHL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportion</td>
<td>40-50%</td>
<td>50-60%</td>
</tr>
<tr>
<td>Growth</td>
<td>slow</td>
<td>fast</td>
</tr>
<tr>
<td>Description</td>
<td>Accidental detection</td>
<td>symptomatic</td>
</tr>
<tr>
<td>Treatment</td>
<td>Not needed immediately due to slow growth</td>
<td>Treatment needed straight away</td>
</tr>
<tr>
<td>outcome</td>
<td>Responds well to Rx, but relapses common.</td>
<td>Responds very well to Rx, more likely to be cured</td>
</tr>
</tbody>
</table>
T**reatment of Relapsed or refractory LG/F/T NHL**

- No conventional chemotherapy regimen is curative
- No regimen is superior with regard to survival
- Patients need additional treatment options
- In the absence of cure or survival benefit, treatments that induce remission and prolong DFS are valuable.
What is Radioimmunotherapy (RIT)?

- Combines the benefits of **radiation therapy** and **immunotherapy**

- Utilizes **Monoclonal anti-CD20 antibody** to deliver β-emitting Y-90 or I-131 to the malignant B cells.

![Diagram of B cell and 90Y Ibritumomab](image)
What is Radioimmunotherapy (RIT)?

- Provides a systemic but **targeted** approach to therapy.
- Minimizing toxicity to normal tissues.
Rationale for treatment with RIT in NHL

- Over 90% of B-cell lymphomas express CD20, and it is further amplified in malignant B cells.

- CD20 is not present on hematopoietic stem cells, progenitor cells.

- When bound by anti-CD20 antibody, CD20 does not shed from the cell surface into circulation.

- No degradation of the radio-immunoconjugate after antibody binding.
Rationale for treatment with RIT in NHL

β NHL is inherently *sensitive* to radiation.

β Antibodies give *targeted radiation* to the tumor cells. (unlike the more diffuse delivery employed with conventional radiotherapy).

β Kills both *bound and neighboring tumor cells*, overcoming the problem of access in bulky or poorly vascularized tumor cell (Bystander/crossfire effect).
INDICATIONS for RIT

- Relapsed/Refractory Indolent B-Cell NHL
- Low grade FL
- CD20+ transformed B cell NHL
- Rituximab refractory FL
- Indolent Lymphoma in the Front-line Setting
Two FDA approved Moab are available directed against CD20 antigen -

\[^{90}\text{Yttrium} - \text{Ibritumomab Tiuxetan}\]

(Zevalin; Spectrum Pharmaceuticals, Berlin, Germany)

\[^{131}\text{Iodine} - \text{Tositumomab}\]

(Bexxar; GlaxoSmithKline, Research Triangle Park, NC)
General characteristics of RIT Moab

<table>
<thead>
<tr>
<th>Radioisotope</th>
<th>90Y - Ibritumomab</th>
<th>131I - Tositumomab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emission</td>
<td>beta</td>
<td>Gamma & beta</td>
</tr>
<tr>
<td>Range</td>
<td>11.3 mm</td>
<td>2.3 mm</td>
</tr>
<tr>
<td>Energy</td>
<td>2.29 MeV</td>
<td>606 keV</td>
</tr>
<tr>
<td>Half life</td>
<td>64 hours</td>
<td>8 days</td>
</tr>
<tr>
<td>Antibody</td>
<td>Murine IgG - 1</td>
<td>Murine IgG - 2</td>
</tr>
<tr>
<td>FDA approval</td>
<td>2002</td>
<td>2003</td>
</tr>
<tr>
<td>Indications</td>
<td>Relapsed/refractory CD20+ve, Low grade NHL or PR after initial Rx</td>
<td>Relapsed/refractory CD20+ve, Low grade NHL or transformed lymphoma</td>
</tr>
</tbody>
</table>
Advantages of 90Yttrium -Ibritumomab -

Deliver radioactivity to tumors more effectively than 131I and are associated with a better therapeutic index.

Minimal risk for exposure, because of pure beta radiation.

No isolation and can be treated in an outpatient setting.

Disadvantage -

For imaging purposes, 111In, a gamma emitter, is used as a substitute for 90Y.
Advantage of 131I- Tositimomab-

- Same agent can be used for both imaging and therapeutic purposes.

Disadvantages

- Long half-life and the possibility of separation from the antibody can lead to rapid excretion or accumulation in the thyroid, or both.

- Because of gamma emission and long $t_{1/2}$, isolation/hospitalization, shielding, careful disposal of body fluids and are necessary.
Imaging dose

- **Rituximab 250mg/m²**

Followed by (4 hrs) 111In Ibritumomab 5mCi (1.6mg)

Therapeutic dose

- **Rituximab 250mg/m²**

Followed by 90Y Ibritumomab 0.4 or 0.3 mCi/kg (max dose 32mCi)

Dosing schedule for 90Yttrium-Ibritumomab

- **Days**
 - 1
 - 2
 - 3
 - 4
 - 5
 - 6
 - 7
 - 8

- **Scan**
 - 2-24 hrs
 - 48-72 hrs
 - 90-120 hrs
Premedication

- 650-mg oral acetaminophen (NSAID) and 50-mg oral diphenhydramine (Antihistamine)

 - helps to decrease potential side effects from the infusion of rituximab.

- 250-mg/m² rituximab IV at a rate of 50 mg/h

 - to clear the peripheral blood of B cells, increasing the uptake of the radiolabeled antibody to the tumor cells.
§ In the first scan (2-24 hrs) blood pool areas will be visualized, this will become less in later images.

§ Low uptake is expected in the lungs, kidneys, and urinary bladder, with higher uptake expected in the normal liver and spleen.

§ Visualization of the tumor is not a criterion for proceeding to the active therapy.

§ If altered biodistribution is seen, the patient will not receive the therapeutic dose.
Imaging findings

Altered biodistribution -

- Failure to visualize the blood pool on the first image, which possibly indicates rapid clearance of the radionuclide, or
- Diffuse uptake in the normal lungs or kidneys becoming more intense in the liver on the second or third image.

![Diagram of B cell with Tiuxetan and Ibritumomab](image)
\[^{111}\text{In Zevalin biodistribution scan}\]

Concomitant Medications

- Oral thyroid blocking agents:
 - To decrease the risk of hypothyroidism
 - Starting at least 24 hours prior to the dosimetric dose and continuing for 14 days after receiving the therapeutic dose.
 - SSKI - 4 drops orally 3 times/day
 - Lugol’s solution - 20 drops orally 3 times/day
 - Potassium iodide tablets - 130 mg orally once/day

- Oral Acetaminophen 650 mg and diphenhydramine 50 mg: To reduce infusion-related events - 30 min prior to administration of each of the Tositumomab doses.
Thyroid protection - 1 day prior to 14 days post therapeutic dose

Dosimetric step

- 450 mg Tositumomab (1 hr infusion)
- 5 mCi 131I Tositumomab (35 mg) (20 min)

Whole body scans x 3

Day 0

Therapeutic step

- 450 mg Tositumomab
- --- mCi 131I Tositumomab (35 mg) to deliver the desired cGy TBD

Day 2, 3, or 4

Day 6 or 7

Whole body count & Biodistribution
Based on the WBS, patient Specific Dose of activity is calculated

- Platelet count >150x10⁹/L: 75cGy TBD
- Platelet count <150x10⁹/L: 65cGy TBD

Day 7 upto Day 14 therapeutic dose
Iodine-131 Bexxar biodistribution & dosimetric scan

Day 0 Day 2 or 3 Day 6-7

Bkgd - dose calculation

Std - quality control

Dose calculation - Total body counts, residence time (50-150 hrs)

Contraindications -

- Prior hypersensitivities to murine antibodies.
- Prior bone marrow transplants.
- >25% of BM involvement.
- Bone marrow exhibits hypocellularity (<15%).
- Platelet count <100,000/microl
- Neutrophil count <1.5x10^3/microl
- Elevated HAMA titres
RIT for Relapsed/Refractory LG/F/T B-Cell NHL

RCT - Witzig et al, 2002. 90Y-ibritumomab vs rituximab

N - 143 patients

<table>
<thead>
<tr>
<th></th>
<th>90Y-ibritumomab</th>
<th>Rituximab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Response Rate (OR)</td>
<td>80%</td>
<td>56%</td>
</tr>
<tr>
<td>Complete Response Rate (CR)</td>
<td>30%</td>
<td>16%</td>
</tr>
<tr>
<td>Time to progression</td>
<td>24.7 months</td>
<td>13.7 months</td>
</tr>
</tbody>
</table>

Use of 90Y-ibritumomab earlier rather than later in relapsed or refractory disease also is important.

Evidence suggests superior responses and PFS for patients treated in first relapse rather than later in the course of the disease.

Emmanouilides et al, in 2006, have reported -

N = 211

<table>
<thead>
<tr>
<th></th>
<th>1st relapse</th>
<th>2nd relapse</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR rate</td>
<td>51%</td>
<td>28%</td>
</tr>
<tr>
<td>Time to progression</td>
<td>15.4 months</td>
<td>9.2 months</td>
</tr>
</tbody>
</table>

In five clinical trials in 190 patients with follicular NHL, OR (overall response rates) ranged from 47% to 64%.

Median durations of response ranged from 12 to 18 months.

Vose JM, et al. Blood 1999;94:89a
RCT (FIT trial) - Morschhauser et al, 2008,

Comparing 90Y-ibritumomab vs no further therapy in patients who obtained a CR or a PR to standard front-line chemotherapy regimens.

Investigators were allowed to utilize their first-line regimen of choice.

Subjects were restaged upon completion of chemotherapy, and those achieving a CR or a PR were then randomized between the control and the 90Y-ibritumomab arms. \(N= 414 \) patients (consolidation = 208; control = 206)

<table>
<thead>
<tr>
<th>PFS</th>
<th>RIT arm</th>
<th>Control arm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partial responders</td>
<td>30 months</td>
<td>6 months</td>
</tr>
<tr>
<td>Complete responders</td>
<td>92+ months</td>
<td>32 months</td>
</tr>
</tbody>
</table>

Patients randomized to receive 90Y-ibritumomab exhibited a prolonged median PFS compared to controls.

Conversion of 77% of partial responders to CR.

No differences in OS were noted in follow-up to this point, given the indolent nature of follicular lymphoma.
Complications of RIT

- The primary and dose-limiting side effect from RIT is
 - **hematologic toxicity** - anemia, thrombocytopenia and neutropenia.
 - Seen in 22 - 75% - within days to weeks, recovers by 13 - 14 weeks.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Zevalin</th>
<th>Bexxar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myelodysplastic Syndrome (MDS)</td>
<td>1.4-5.2%</td>
<td>10%</td>
</tr>
<tr>
<td>HAMA</td>
<td>2%</td>
<td>20% or more</td>
</tr>
<tr>
<td>Hypothyroidism</td>
<td>--</td>
<td>++</td>
</tr>
</tbody>
</table>

HAMA - usually resolves spontaneously. Alters the biodistribution of the Ab-contraindication for future therapies.
Concerns

- Effective treatment but still under-utilized.

- Not available in India as of now but VERY SOON SHOULD BE AVAILABLE

- Cost ??

- Newer Rps - 177Lu rituximab, 131I rituximab.
RIT combines the effects of immunotherapy (Apoptosis, ADCC, CDC) and radiation therapy - thus more effective.

- Usually one-time therapy.
- Lesser side-effects - less toxic
- Even ag-negative non-targeted cells can be irradiated due to Bystander effect.
Teamwork

Medical oncologist

Pharmacist & technologist

Radiation oncologist

NM physician
Retention time = 167.54 hrs, Calculated therapeutic activity = 30.45 mCi
10 patients

There may be considerable interindividual differences in absorbed doses of organs and generalization or extrapolation of doses in the clinical setting at present is not feasible with Lu-DOTA-rituximab in non-Hodgkin's lymphoma patients. Patient-specific dosimetry is thus recommended to eliminate the variations and reduce the possibility of dose-limiting toxicity.
Preliminary Experience with Yttrium-90-labelled Rituximab (Chimeric Anti CD-20 Antibody) in Patients with Relapsed and Refractory B Cell Non-Hodgkins Lymphoma.

Thakral P1, Singla S, Vashist A, Yadav MP, Gupta SK, Tyagi JS, Sharma A, Bal CS, Snehlata EY, Malhotra A.

All the patients received rituximab 250 mg/m2 on days 1 and 8, and either 14 MBq/kg (0.4 mCi/kg) or 11 MBq/kg (0.3 mCi/kg) of Y-90 Rituximab on day 8 (maximum dose, 32 mCi) depending upon their platelet count. The patients were observed for systemic toxicity and response for at least 12 weeks after therapy.

90Y-Rituximab therapy is safe and well tolerated in high risk extensively pretreated NHL patients. Toxicity is primarily hematologic, transient and reversible.
RIT in Leukemias pre BMT

