IMPACT OF FDG PET/CT STUDIES ON NON CNS PEADIATRIC MALIGNANCIES

Dr Sneha Shah Tata Memorial Hospital, Mumbai.

Topics covered

Lymphomas including Burkitts

Pediatric solid tumors (non CNS)

- Musculoskeletal Ewings & osteosarcoma.
- Neuroblastomas
- Nasopharyngeal carcinomas
- Liver tumors
- Wilms tumor

Lymphoma staging

- Sensitivity > 80% and specificity $\sim 90\%$
- 15 20% patients show additional sites of disease
- Extranodal disease better sensitivity.

NCCN guidelines recommend use of PET for staging when available.

International Harmonization Project guidelines for baseline:

- Baseline scan not mandatory for HL and DLBCL and other FDG avid NHL. But can be used for staging when CT equivocal
- If FDG uptake of the type of lymphoma is doubtful, baseline scan would be useful if plan to utilize for treatment response assessment.

Literature – staging lymphoma

 ¹⁸F]FDG in childhood lymphoma: clinical utility and impact on management European Journal of Nuclear Medicine and molecular Imaging Vol 29 (2002), No 9

42 studies.Staging, restaging and treatment response.FDG PET altered the management of 23% of patients.

Impact of PET-CT on involved field radiotherapy design for pediatric Hodgkin lymphoma Pediatric blood cancer August 2011

53 patients underwent staging with conventional imaging and PET/CT .
19/53 patients had discordant findings, with 23 sites of discordance.
Change in stage 5 /53 PET-CT findings(9.4%) : 3 upstaged and 2 downstaged.
Change in the radiotherapy field in 9/53 patients(17.0%)
(eight patients the radiotherapy fields were more extensive while in 1 it was less extensive.)

STAGING

Left neck node – clinically negative

Splenic involvement

Focal marrow lesion Marrow biopsy negative

Treatment response

 Identify non responders at end of treatment
 Interim PET – no significant fall in uptake suggest poor DFS. Bad prognosis

COULD BE INCLUDED AS A PROGNOSTIC MARKER

Treatment response

COMPLETE RESPONSE

PROGRESSION

Literature – treatment response

Early and Late Therapy Response Assessment With [¹⁸F]Fluorodeoxyglucose Positron EmissionTomography in Pediatric Hodgkin's Lymphoma: Analysis of a Prospective Multicenter Trial

JCO September 10, 2009 vol. 27 no. 26 4385-4391

- Multi centric trial 40 patients.
- Baseline (PET 1), early (PET2) and late (PET3) response assessment.
 - PET was superior to CIMs with regard to specificity in early and late therapy response assessment (68% v 3%, and 78% v 11%, respectively
 - Cut off 58% reduction higher specificity

Early FDG PET/CT in predicting final therapy outcome in pediatric lymphoma J Nucl Med. 2009; 50 (Supplement 2):51

Early FDG PET/CT after 2 cycles Accurately predict the final treatment response in pediatric lymphoma and may be crucial to for planning risk adapted treatment strategy

Burkitt's lymphoma

- Highest evidence Treatment response assessment
- Treatment response residual disease
- Advocate : Management changes interim study!

Treatment response

PARTIAL RESPONSE

COMPLETE RESPONSE

Lymphoma - follow up

Not a indication for routine surveillance.
Symptomatic or clinical suspicion.

Definitions of the appropriateness criteria for the utility of PET

Relevance of Test	Description
Appropriate	 evidence of improved diagnostic performance (higher sensitivity and specificity) compared with other current techniques the information derived from the PET scan influences clinical practice the information from PET has a plausible impact on the patient's outcome, either through adoption of effective practice or non adoption of ineffective or harmful practice
Probably Appropriate	evidence of improved diagnostic performance (higher sensitivity and specificity) compared with other current techniques, but lacking evidence for an impact on treatment and outcome
Potentially Appropriate	Insufficient evidence available for assessment, although there is a strong rationale for a benefit of PET.
Inappropriate	Clinical situations for which improved accuracy of stage will not alter management, or for which the performance of PET is inferior to other current techniques.

Summarize - lymphoma

Appropriateness criteria for PET

- Staging appropriate
- Treatment response appropriate
- Interim treatment response probably appropriate.
- Sollow up inappropriate

Solid non CNS tumors

Few systematic studies with subtype evaluation available. Majority are retrospective analysis

18F-FDG PET/CT in Evaluating Non-CNS Pediatric Malignancies <u>J Nucl Med</u> <u>Volume 48: 1923–1931/2007</u>

Retrospective review n - 55, 151 scans. Diagnostic accuracy of PET/CT was 90% as compared to CI. Additional information was available in 1/3rd (approx 34%) patient population. True negative in post treatment scenario as compared to false positive with CI.

Literaturecontd

Early experience with PET/CT scan in the evaluation of pediatric abdominal neoplasms Journal of Pediatric surgery Volume 43, 2186–2192/ December (2008)

Retrospective analysis n-36FDG positive in all tumors pre treatment scans, Describes utility in staging, site for biopsy, locating distant metastases, treatment response and follow up for recurrence.

Diagnostic value of PET/CT for the staging and restaging of pediatric tumors

European Journal of Nuclear Medicine and Molecular Imaging Volume 36, Number 1 / January, 2009

Retrospective analysis

n-43

High sensitivity of PET/CT for distant metastases, specificity greater if pulmonary met > 0.5 cms and lymphnode size < 1 cms as compared to CT.

Musculoskeletal malignancies

STAGING

- Useful in N and M staging.
- Specificity of identifying skeletal metastases is the highest with FDG PET/CT Vs CI
- Sensitivity for pulmonary lesions > 5mm is similar to CT, however reduced for smaller nodules.
- Sensitivity and specificity for nodal disease or soft tissue metastases and rare sites with skeletal disease but common in soft tissue sarcomas is HIGH.

TREATMENT RESPONSE

- Early data suggests responders to NACT/induction therapy have a better prognosis.
- Non responders could be deferred from morbid surgeries, especially with disease in the axial region.

FOLLOW UP AND RESTAGING

- No role in surveillance
- Good sensitivity for identifying recurrence in skeletal disease; Not enough evidence for utility in this setting in soft tissue sarcomas.

Ewings group of tumors

Useful in nodal and metastatic staging – N & M

Impact of FDG PET for staging of Ewing sarcomas and primitive neuroectodermal tumours. Nucl Med Commun. 2006 Jan;27(1):17-24.

PET is superior to bone scintigraphy in the detection of bone metastases . Lower sensitivity for small pulmonary lesions as compared to helical CT.

Positron emission tomography for staging of pediatric sarcoma patients: results of a prospective multicenter trial J Clin Oncol 2007;25(34):5435–5441

The superiority of FDG PET to bone scintigraphy in detecting osseous metastases was significant (sensitivity, 88% vs 37%). Nodal metastases were also identified better, local imaging may not include the nodal regions.

TMH study – staging of Ewings with FDG PET/CT Vs Bone scan (analyzed, unpublised)

n - 45

	Concordance	Discordance
Primary	100%	_
Osseous metastases	3/45 (6%)	7 (additional sites identified on FDG PET/CT)*

FDG identified 10 metastatic skeletal lesions (22%).
85% (6/7) of the additional metastatic lesions detected on PET/CT were marrow lesions.

TMH study: Comparison CI Vs PET/CT

	CWP	FDG PET/CT
Primary	45	45
Osseous mets	3/45(6%)	10/45(22%)
Pulmonary mets	12 lesions	12 lesions
Nodal mets	0	4

Extra-skeletal metastases were identified in 35% (16/45) patients 8/45 – Only skeletal metastases (17%) 07/16 - Both skeletal and non skeletal metastases. (46%)

Osteosarcoma

- Useful in staging N and M.
- Skip lesions identified.
- Certain studies have shown utility in grading the tumor.
- Utility in treatment response assessment. Studies have shown response to NACT correlate with histological response.
- Good responders better DFS and survival.
- Trials ongoing management changes based on PET/CT

Treatment response

Responder

Non responder

Summarize - MSK

- Staging appropriate
- Treatment response (post induction)probably appropriate
- Recurrence appropriate
- Sollow up inappropriate

Neuroblastoma

- Useful in staging.
- Studies show concordant results with MIBG
- Subtle marrow lesions upper edge.
- Recurrent setting good sensitivity
- Treatment response evidence lacking.

Evidence for NB

Neuroblastoma: positron emission tomography with 2-[fluorine-18]-fluoro-2deoxy-D-glucose compared with metaiodobenzylguanidine scintigraphy.

<u>Radiology :</u> <u>Volume 199/3: 743/ 1996</u> n - 17

FDG positivity in 16, Increased uptake prior to therapy and reduced after Rx. Useful in non MIBG concentrating tumors.

Extending Positron Emission Tomography Scan Utility to High-Risk Neuroblastoma: Fluorine-18 Fluorodeoxyglucose Positron Emission Tomography as Sole Imaging Modality in Follow-Up of Patients

<u>J Clin Oncol</u> <u>Volume 19 (14):3397-3405/ 2001</u>

Retrospective analysis

n – 51

FDG PET was compared with conventional imaging, minimal test required identified. A FDG PET and BM would be accurate in staging 97.5% of the patient population. Better modality for soft tissue and extra cranial skeletal structure delineation.

TMH data (analyzed, unpublished)

● n - 85

Indication	Concordance	Discordance	superiority
Staging	50% (12/24)	50%(12/24)	FDG
Restaging	11% (1/9)	91%(8/9)	FDG
Rx response	65% (26/40)	35%(14/40)	12.5%FDG
			22.5% MIBG
Follow up	100% 12/12		EQUAL

MIBG superior for assessing viability of mass lesion.

STAGING

Left axillary & pleural

DISCORDANCE

RESTAGING

Rt suprarenal recurrence Marrow lesions Left pulmonary lesion.

DISCORDANCE

CONCORDANCE

Treatment response

Pretreatment

Post induction - MIBG

Low FDG uptake suggestive of reducing metabolism MIBG concentration suggests viable tumor NEEDS VALIDATION

Summarize - Neuroblastoma

- Staging probably appropriate
- Treatment response potentially appropriate
- Recurrence probably appropriate
- Sollow up not enough data

Nasopharyngeal carcinoma

- Malignancy occurring predominantly in adolescence
- Aggressive tumor, high propensity for spread.
- Useful in N and M staging.

The utility of PET/CT in staging and assessment of treatment response of nasopharyngeal cancer. J Med Imaging Radiation Oncol 2011 Apr;55(2):199-205

Valuable staging tool for the detection of occult metastatic disease and defining the extent of neck nodal disease.

Role of 18F-FDG PET/CT in diagnosis and staging of nasopharyngeal carcinoma Ai Zheng 2008 Sep;27(9):974-8

68 patients evaluated with MRI and PET/CT superiority of PET/CECT for nodal staging and occult disease.

Primary tumor Neck nodal disease - extent

Treatment response and restaging

Sensitivity high in assessing local disease and nodal metastases.

The utility of PET/CT in staging and assessment of treatment response of nasopharyngeal cancer J Med Imaging Radiation Oncol 2011 Apr;55(2):199-205

Post-treatment, a complete metabolic response on PET/CT has a very high negative predictive value with fewer equivocal results than MRI.

Early assessment – false positives high Infective changes and radiation osteonecrosis – difficult to differentiate.

Treatment response – CR

Summarize – Nasopharyngeal carcinoma

- Staging probably appropriate
- Treatment response probably appropriate
- Follow up potential appropriate
- Recurrence probably appropriate

Evidence in Wilms Tumors

Use of positron emission tomography for staging, preoperative response assessment and post therapeutic evaluation in children with Wilms tumour.

Eur J Nucl Med Mol Imaging. Volume 35/9:1642-50/ Sept 2008

n-12FDG PET was concurrent for primary tumor staging. PET was superior for tumor recurrence or residual disease evaluation.

An initial study evaluated 3 patients who showed concentration of FDG in all patients and showed an impact in management by detecting recurrence And a case report mentions uptake in metastatic sites.

Recurrence of Wilms tumor

FDG PET in Hepatic malignancies

FDG PET for the Study of Primary Hepatic Malignancies in Children <u>Pediatr Blood Cancer</u> <u>Volume 47:51–55/ 2006;</u>

Retrospective study, n-7Positive in all recurrent disease and in infection.

In a study of 3 patients, PET localized recurrent disease while the CI were negative Another case report also reveals a similar finding.

Post operative site infection – false positive.

Summarize – Wilms & Hepatic

Not enough data for assessing the impact.

Definitions of the appropriateness criteria for the utility of PET

Relevance of Test	Description
Appropriate	 evidence of improved diagnostic performance (higher sensitivity and specificity) compared with other current techniques the information derived from the PET scan influences clinical practice the information from PET has a plausible impact on the patient's outcome, either through adoption of effective practice or non adoption of ineffective or harmful practice
Probably Appropriate	evidence of improved diagnostic performance (higher sensitivity and specificity) compared with other current techniques, but lacking evidence for an impact on treatment and outcome
Potentially Appropriate	Insufficient evidence available for assessment, although there is a strong rationale for a benefit of PET.
Inappropriate	Clinical situations for which improved accuracy of stage will not alter management, or for which the performance of PET is inferior to other current techniques.

Summarize

Appropriateness criteria	Disease	Indication
Appropriate	lymphoma	staging, treatment response, recurrence
	MSK	N& M staging
	Neuroblastoma	N & M Staging
Probably appropriate	Lymphoma	Interim response
	MSK	Post induction treatment response Recurrence
	Neuroblastoma	recurrence
Potentially appropriate	Neuroblastoma	Treatment response
Inappropriate	Lymphoma, MSK	Follow up/surveillance