# <sup>131</sup>I-MIBG Therapy

### Dr Sandip Basu Radiation Medicine Centre (BARC) Tata Memorial Centre Annexe, Parel, Mumbai

IAEA-RCA Project RAS6071/9002/01 Mid-term Review and Educational Meeting on Radionuclide Therapies Tata Memorial Centre, Mumbai, INDIA Looking at the Viability of <sup>131</sup>I-MIBG Therapy in the background of evolution of PRRT

## Indications for I-131 MIBG therapy

1. Metastatic/Inoperable phaeochromocytoma
2. Metastatic/Inoperable paraganglioma
3. Stage III or IV neuroblastoma
4. Metastatic/Inoperable carcinoid tumour
5. Metastatic or recurrent medullary thyroid cancer

### WHO Classification of GEP NET: the major areas of use of PRRT

WHO 2000 [2.24]

Well differentiated (neuro)endocrine tumour (WDET)

Well differentiated (neuro)endocrine carcinoma (WDEC)

Poorly differentiated (neuro)endocrine carcinoma (PDEC)

Mixed exocrine-endocrine carcinoma

Tumour-like lesions

Neuroendocrine tumour G1

Neuroendocrine tumour G2

Neuroendocrine carcinoma G3 — Large cell — Small cell

Mixed adeno-neuroendocrine carcinoma

WHO 2010 [2.25, 2.26]

Hyperplastic and pre-neoplastic lesions

### Thoracic NET: WHO Classification

TABLE 2.4. WHO (2004) CLASSIFICATION OF NEUROENDOCRINE TUMOURS OF THE LUNG [2.29, 2.30]

| Туре                                   | Differentiation grade | Mitosis per<br>2 mm² (10 HPF) <sup>a</sup> | Other features                |
|----------------------------------------|-----------------------|--------------------------------------------|-------------------------------|
| Typical carcinoid                      | Well differentiated   | <2                                         | No necrosis                   |
| Atypical carcinoid                     | Well differentiated   | 2–10                                       | With/without necrosis         |
| Large cell<br>neuroendocrine carcinoma | Poorly differentiated | 11; median: 20                             | With necrosis;<br>large cells |
| Small cell<br>neuroendocrine carcinoma | Poorly differentiated | 11; median: 80                             | With necrosis;<br>small cells |



Foreseeing the Clinical use of <sup>131</sup>I-MIBG therapy in the era of PRRT

- Scan feature: Most important determinant
- Tumor Histology: NBL, Pheo, Paraganglioma
- Pediatric Age group: A very important determinant esp in v/o renal toxicity of PRRT
- Harder beta of I-131 compared to Lu-177
- Documented renal toxicity of PRRT & relatively long experience with 131I-MIBG

35 /M; Inoperable Lung Carcinoid (atypical). Hynic TOC scan showed SSTR positive lesions in right lung and right mediatinum. MIBG avid lesions in right lung and right mediatinum. More number of lesions were appreciable on the MIBG scan than the HYNIC-TOC scan. Also these lesions showed more affinity for MIBG rather than HYNIC TOC. Patient was subjected to treatment with 3 cycles of I-131 at an interval of 3 months with symptomatic relief as well as the subsequent MIBG scans showed decrease MIBG uptake in the lesions indicating good response.





35/F, k/c/o MEN IIa; Post total thyroidectomy and left adrenalectomy; Calcitonin is substantially elevated. Presented with multiple metastatic lesions in both lobes of liver. HYNIC-TOC scan was normal. MIBG scan demonstrated avid tracer accumulation. Following treatment with 4 #, patient was asymptomatic though calcitonin was elevated (reduced from baseline), the USG (Abdomen) demonstrated calcification in the metastatic foci and regression of the left lobe lesion.



64/M; Inoperable Paraganglioma; Symptom: abdominal pain and fluctuating BP. Both HYNIC-TOC as well as MIBG scan showed positive lesions in the left suprarenal region with lesion showing high aviditiy for both the tracers. Patient was subjected to I-131 MIBG therapy owing to the higher beta max of I-131 than that of Lu-177 used in PRRT. Patient has shown symptomatic relief with a decrease in the tumour markers (Pre therapy VMA: 11.7/24 hrs and Posttherapy VMA: 6.4/24 hrs) indicating good response.







### Pediatric Age group: the considerations favoring I-131 MIBG Therapy

Documented Renal toxicity of PRRT assumes important consideration in pediatric age group for 2 specific reasons: (a) Intensive pretreatment (Neuroblastoma) with nephrotoxic chemotherapy viz. cisplatin and ifosfamide and (b) Relatively immature renal function especially in infants.

- Amino acid infusion for renal protection during PRRT (and its consequential known adverse effect of emesis due to metabolic acidosis) is less validated till date in infant & paediatric age group, many of whom will be relatively sick
- 3. Vast majority are Neuroblastoma, which are predominantly <sup>131</sup>I MIBG avid.

Nucl Med Commun 2015 Jan;36(1):1-7.

### [131] Metaiodobenzylguanidine therapy in neural crest tumors: varying outcome in different histopathologies



## Therapeutic Response Assessment

Decrease in tumors volume

Hormonal Response: Decline in catecholamine and metabolite levels

Symptomatic Response: Decrease in Blood pressure

Stable disease and improved health-related quality of life (HRQoL) following fractionated low dose <sup>131</sup>I-metaiodobenzylguanidine (MIBG) therapy in metastatic paediatric paraganglioma: observation on false "reverse" discordance during pre-therapy work up and its implication for patient selection for high dose targeted therapy

The British Journal of Radiology, 79 (2006), e53-e58

Table 1. Summary of the quality of life data at multiple time points

| Baseline performance                                               | Lack of energy, trouble meeting needs of life, aches or pain, bothered about side effects treatment, feeling ill, forced to spend time in bed, satisfaction with family communication abo illness, sadness, satisfaction about coping with illness, losing hope, nervousness, anxiety abo dying, anxiety about condition getting worse, able to work, able to enjoy work or life, slee content with the quality of life at that instant: all these had a reduced performance status prior treatment | of<br>ut<br>ut<br>p,<br>to |
|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| At the time of work<br>up before 2nd therapy<br>3 months following | All the components except pain showed an improvement by at least 2 grades. Pain was graded 3 this time point<br>All except pain were graded either normal or one grade below normal. "Pain" was graded as 2 at the                                                                                                                                                                                                                                                                                  | at<br>nis                  |
| 3 months following<br>3rd therapy                                  | All except pain were graded either normal or one grade below normal. "Pain" was graded as 2 a<br>time point, which showed gradual improvement with time                                                                                                                                                                                                                                                                                                                                             | attr                       |

Using three consecutive low doses of 131I-MIBG: Excellent symptomatic and hormonal responses were observed.

### [131] Metaiodobenzylguanidine therapy in neural crest tumors: varying outcome in different histopathologies

| Table 10 | Comparative data of | treatment response in | different subgroups |  |
|----------|---------------------|-----------------------|---------------------|--|
|          |                     |                       |                     |  |

| Response            | Group A<br>(stage III NBL) | Group B<br>(stage IV NBL) | Group C (pheochomocytoma +paraganglioma) | Group D (metastases+carcinoid) | Total no. of patients |
|---------------------|----------------------------|---------------------------|------------------------------------------|--------------------------------|-----------------------|
| VGPR                | -                          | 1 (9%)                    | -                                        | -                              | 1 (3%)                |
| PR                  | 4 (57%)                    | 3 (27%)                   | 1 (8%)                                   | _                              | 8 (25%)               |
| SD                  | 2 (29%)                    | 6 (55%)                   | 11 (92%)                                 | 2 (100%)                       | 21 (66%)              |
| PD                  | 1 (14%)                    | 1 (9%)                    | -                                        | _                              | 2 (6%)                |
| Subjective response | 2 (30%)                    | 4 (36%)                   | 9 (75%)                                  | 2 (100%)                       | 17 (63%)              |

PD, progressive disease; PR, partial response; SD, stable disease; VGPR, very good partial response.

Both single high dose or multiple fractionated doses are equally effective in improving the quality of life in metastatic/recurrent pheochomocytoma/paraganglioma

### [131I] Metaiodobenzylguanidine therapy in Neuroblastoma: Report on efficacy

A median dose of 9.5 mCi/kg of 131I-MIBG was delivered in 32 courses to 20 patients. The objective response rate to the first therapy was 31%. (J Pediatr Hematol Oncol. 2003 Oct;25(10):769-73.

Most studies report a response rate of 30–40% with <sup>131</sup>I-MIBG in this population.

### [131] Metaiodobenzylguanidine therapy in neural crest tumors: varying outcome in different histopathologies

#### Table 5 Characteristics of group C

| Case<br>no. | Sex,<br>age | Primary tumor site                        | Time from diagnosis to<br>MIBG therapy (months) | Primary tumor<br>conc. MIBG | Metastases                     | U.<br>VMA | [ <sup>131</sup> I] MIBG<br>therapy<br>courses | Cumulative<br>dose | Tumor response<br>after MIBG<br>therapy | Clinical course<br>and outcome      |
|-------------|-------------|-------------------------------------------|-------------------------------------------------|-----------------------------|--------------------------------|-----------|------------------------------------------------|--------------------|-----------------------------------------|-------------------------------------|
| 1           | M/57        | Lt adrenal                                | 8                                               | No                          | Bone (m)                       | E         | 2                                              | 224                | SD                                      | Alive 15 months<br>NF               |
| 2           | F/19        | Extra-adrenal<br>between aorta<br>and ivc | 3                                               | Yes                         | Bone (m)                       | E         | 3                                              | 370                | SD                                      | Alive 89 months<br>SD               |
| 3           | M/65        | Pre- and para-<br>aortic rgn              | 6                                               | Yes                         | Mediastinum                    | E         | 1                                              | 204                | SD                                      | Death 14<br>months SD               |
| 4           | M/55        | RP In                                     | 3                                               | Yes                         | Bone (m)                       | E         | 1                                              | 244                | SD                                      | Alive 6 months<br>NF                |
| 5           | M/36        | Left adrenal                              | 14                                              | Yes                         | Lung, In,<br>bone (m)<br>liver | E         | 2                                              | 324                | SD                                      | Alive for 21<br>months SD           |
| 6           | M/20        | Left adrenal                              | 3                                               | Yes                         | -                              | E         | 5                                              | 513                | SD                                      | Alive for 20<br>months PD<br>and NF |
| 7           | M/20        | Right adrenal                             | 2                                               | No                          | Lung                           | Е         | 2                                              | 422                | PR                                      | Alive for 15<br>months SD           |
| 8           | F/16        | Rt adrenal                                | 16                                              | Yes                         | Liver, lung,<br>bone (m)       | E         | 3                                              | 386                | SD                                      | Alive 19 months<br>NF               |
| 9           | M/51        | B/I adrenal                               | 2                                               | Yes                         |                                | E         | 4                                              | 273                | SD                                      | Alive 38 months<br>NF               |
| 10          | F/20        | Right adrenal                             | 48                                              | Yes                         | Ln                             | E         | 4                                              | 354                | SD                                      | Alive 74 months<br>NF               |
| 11          | M/14        | Right adrenal                             | 4                                               | Yes                         | Liver                          | E         | 1                                              | 199                | SD                                      | Alive 6 months<br>SD                |
| 12          | F/36        | Bladder                                   | 6                                               | Yes                         | Lung, liver,<br>In             | E         | 2                                              | 313                | SD                                      | Alive 36 months<br>SD               |

Bone(m), multiple sites of metastases; conc., concentration; MIBG, metaiodobenzylguanidine; NF, no follow-up; PD, progressive disease; PR, partial remission; SD, stable disease; U. VMA, urine vanillylmandelic acid.

Rachh et al. Nucl Med Commun 2011;32(12):1201-10

# <sup>131</sup>I-MIBG therapy in metastatic Phaeochromocytoma and Paraganglioma

- The median initial dose was 7.4 GBq (200 mCi; median cumulative dose was 22.2 GBq (600 mCi)
- Objective tumour response was achieved in 47% of the patients. Biochemical response rate was 67%, and symptomatic response was seen in 89% of the patients
- Haematologic complications were the most common side effects and were observed in 26% of the patients

Gedik GK et al. Eur J Nucl Med Mol Imaging. 2008 Apr;35(4):725-33

High-dose [131I]metaiodobenzylguanidine therapy for patients with metastatic pheochromocytoma and paraganglioma

- 50 patients with metastatic PHEO or PGL, age 10 64 years, were treated with 492-1,160 mCi (median, 12 mCi/kg). Cumulative dose administered ranged from 492 -3,191 mCi.
- The overall complete response (CR) plus partial response (PR) rate in 49 evaluable patients was 22%. 35% of patients achieved a CR or PR in at least one measure of response without progressive disease, and 8% of patients maintained stable disease for greater than 12 months. 35% of patients experienced progressive disease within 1 year after therapy.

Gonias et al. J Clin Oncol. 2009 Sep 1;27(25):4162-8.

High-dose [131I]metaiodobenzylguanidine therapy for patients with metastatic pheochromocytoma and paraganglioma

Toxicities included grades 3 to 4 neutropenia (87%) and thrombocytopenia (83%).

Grades 3 to 4 nonhematologic toxicity included acute respiratory distress syndrome (n = 2), bronchiolitis obliterans organizing pneumonia (n = 2), pulmonary embolism (n = 1), fever with neutropenia (n = 7), acute hypertension (n = 10), infection (n = 2), myelodysplastic syndrome (n = 2), and hypogonadism (n = 4).

# MIBG therapy: Available data on efficacy

- There are basically two treatment strategies: one or two high-dose treatments or multiple low-dose treatments.
- Symptomatic relief in the vast majority of patients treated, both following high-dose treatment and low-dose maintenance treatment.
- Biochemical responses can be observed in about half of the patients, whereas radiographic responses are described in roughly one third of the patients.

## **Dose Reduction**

Low white blood cell and platelet counts.

Massive bone marrow invasion and/or

Impaired renal function

# **Risk of Myelosuppression**

- Temporary myelosupression: 4–6 weeks posttherapy (an isolated thrombocytopenia)
- 1. Common in children with neuroblastoma after chemotherapy (60%), quite remote in adults.
- 2. In patients who have bone marrow involvement at the time of <sup>131</sup>I-mIBG therapy
- 3. In patients with delayed renal <sup>131</sup>I-mIBG clearance



### The noradrenaline transporter molecule (NET)

617 amino acids protein with twelve transmembrane domains, encoded by the SLC6A2 gene

 Active uptake, which is specific, high-affinity, saturable, adenosine triphosphatase-dependent, only occurs in cells that synthesize NET

•Passive diffusion, which is nonspecific, low-level, energy independent, and unsaturable, and takes place in all cells)

•The specific uptake process is about 50 times more efficient than passive uptake

# <sup>131</sup>I MIBG: Mechanism of Localization

Taken into cells by either the energy-dependent type I amine uptake mechanism (specific, high affinity, saturable, 50 times more efficient) or by passive diffusion.

The transfer of mIBG from intracellular cytoplasm into catecholamine storage vesicles (neurosecretory vesicles) is mediated by an ATPase-dependent proton pump.

In neuroblastoma, neurosecretory granules are thought to play a minor role and a fast re-uptake after passive outward diffusion is suggested



# **Drugs interfering MIBG uptake**

| Drugs known to interfere                                           | Drugs expected to interfere                                                         |
|--------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Labetalol (1,2)                                                    | Adrenergic blocking agents (2) e.g.<br>Bretylium, Guanethidine                      |
| Reserpine (2,3)                                                    | Sympathomimetics (2) e.g.<br>Amphetamine, Dopamine,<br>Isoprenaline,<br>Terbutaline |
| Calcium-channel blockers (4)<br>e.g. Nifedipine,<br>Verapamil      | Phenothiazines (1), e.g.<br>Chlorpromazine, Promethazine                            |
| Tricyclic antidepressants (1)<br>e.g. Amitriptyline,<br>Imipramine | Butyrophenones (1) e.g. Droperidol,<br>Haloperidol                                  |
| Sympathomimetics (2) e.g.<br>Ephedrine                             | Thioxanthines (1) e.g. Maprotiline,<br>Trazolone                                    |
| Cocaine (1)                                                        |                                                                                     |

#### Presumed mechanism:

(1) = uptake-1 inhibition

- (2) = depletion of granules
- (3) = transport inhibition
- (4) = uncertain

Many drugs interfere with uptake of MIBG, particularly tricyclic antidepressants, sympathomimetics (e.g., pseudoephedrine), and certain antihypertensives (labetalol, reserpine).

# **Thyroid Blockade**

| Compound              | Adults            | Children<br>(15–50 kg) | Children<br>(5–15 kg) | Children<br>(<5 kg) |
|-----------------------|-------------------|------------------------|-----------------------|---------------------|
| Capsules              | mg/daily          |                        |                       |                     |
| Potassium iodate      | 170               | 80                     | 40                    | 20                  |
| Potassium iodide (KI) | 130               | 65                     | 32                    | 16                  |
| Lugol solution 1%     | 1 drop/kg per day | with a maximum of 4    | 0 (20 drops twice dai | ly)                 |
| Capsules              | mg/daily          |                        |                       |                     |
| Potassium perchlorate | 400               | 300                    | 200                   | 100                 |

### Lugol's 5% solution

It consists of 5% iodine and 10% potassium iodide (KI) in distilled water with a total iodine content of 130 mg/mL.

EANM guidelines. MIBG therapy

## Iodine-131-metaiodobenzylguanidine Therapy In Neuroblastoma: Issues

As first line treatment before chemotherapy in Stage III/IV disease:

Advantages: Reserve chemotherapy for the adjuvant setting and delay the development of chemoresistance

- Iodine-131-metaiodobenzylguanidine as initial preoperative induction treatment in stage 4 neuroblastoma patients over 1 year of age.
- 1. The objective response rate at this point was 66%.
- 2. After pre-operative therapy and surgery, the overall response rate was 73%.

Kraker et al. Eur J Cancer. 2008 Mar;44(4):551-6.

## Issues requiring further clarification

- Optimal administered activity per treatment cycle
- Total number of treatments and treatment interval by tumour type
- Role of 131 I-mIBG in neuroblastoma:
- 1. In first line treatment
- 2. In multimodality treatment (e.g. combined with topotecan and/or bone marrow ablative therapy with stem cells rescue)

