Pediatric PET-CT Tips & Technique (Image gently)

Dr Sneha Shah Department of Nuclear Medicine Tata Memorial Hospital Parel, Mumbai

Topics covered

• Tips

Introduction Pediatric malignancies
 Changing trends & Radiation burden
 Radiation exposure from PET/CT
 Image gently

 PET & CT modification
 PET/CT protocols

Pediatric malignancies

- Leukaemia / lymphoma: ~ 35%
 - > acute lymphoblastic leukaemia : 23%
 - > Hodgkin disease : 5%
 - > acute myelogenous leukaemia : 4%
 - > NHL:5%
- Central nervous system malignancies : ~20%
 - > Astrocytomas
 - > Gliomas
 - > Medulloblastomas
- Solid tumours
 - > blastomas : ~15%
 - Neuroblastoma: 7%
 - Wilms tumour_: 6%
 - Retinoblastoma
 - > sarcomas ~10%
 - Rhabdomyosarcoma: 3%
 - Osteosarcoma : 3%
 - Ewing sarcoma : 2%

Survival of pediatric malignancies

- Childhood malignancies sensitive to treatment.
- Change in treatment management- multimodality approach (RT, Surgery and chemotherapy)

Efficacy improving, but associated damages

- Secondary malignancies
- Cardiac impairment
- Pulmonary dysfunction
- Infertility
- Chronic hepatitis
- Alteration in growth and cognitive abilities

Aim of treatment - Judicious use

Medications Investigation

Changing trends

Tailor made treatment regimes.
Need for early alterations in therapy.

• Use of imaging for response assessment.

- Anatomic imaging changes identified later.
- Metabolic imaging need for localization and anatomy.

Combined use - HYBRID IMAGING.

Imaging in oncology

- Staging
- Treatment response assessment
- Completion of treatment
- Surveillance
- Restaging

CT and US : incorporated in all guidelines in management.

PET/CT : Introduced into management of pediatric patients later Incorporated in few guidelines.

Radiation exposure (PET/CT)

Fear of increased radiation over CIM.
Radiation from PET & CT

Radiation exposure during PET/CT

Radiation exposure of patients undergoing whole body dual modality 18F FDG PET/CT examinations

- Brix et al, Journal of nuclear medicine ;2005, 46 (4): 608

Average effective patient dose: 25mSv FDG PET/CT

"In anteroposterior and lateral direction; dose indicated represents the dose sum from both topograms CA = Intravenous CT contrast agent administered for most examinations.

vancing molecular imaging

Suggestion: Optimization of CT protocol

TABLE 3 Measurement Parameters Used for Low-Dose (LD-CT) and Diagnostic (D-CT) Whole-Body CT Scans Summarized in Table 2

Abbreviation of CT scan	U (KVp)	Q _{el} (mAs)	h _{col} (mm)	P	L (mm)	CTDI _{vol} (mGy)
H2-LD-CT	120	60	6.5	1.5	910	2.9
H3-LD-CT	110	30	4.0	2	851	1.0
H4-LD-CT	120	32.5	0.75	1.25	887	2.0
H1-D-CT	140	150	2.5	1.5	867	14.1
H2-D-CT	120	195	5.0	1.5	890	9.5
H3-D-CT	130	111	4.0	1.0	851	11.9
H4-D-CT	120	200	1.5	1.25	887	11.2

U = tube potential; Q_{al} = electrical mAs-product; h_{col} = slice collimation; p = pitch factor; L = scan length; CTDI_{vol} = volume CT dose index.

	Scan		Effecti	ve dose (mSv)
Hospital	Туре	Abbreviation	Per scan	Per examination
H1	2 Topograms*		0.8	
	Diagnostic CT with CA	H1-D-CT	18.6	
	PET, 370 MBq 1aF-FDG	H1-PET	7.0	26.4
H2	Topogram		0.1	
	Low-dose CT	H2-LD-CT	4.5	
	PET, 300 MBq ¹⁸ F-FDG	H2-PET	5.7	
	Diagnostic CT with CA	H2-D-CT	14.1	24.4
H3	Low-dose protocol			
	Topogram		0.2	
	Low-dose CT	H3-LD-CT	1.3	
	PET, 370 MBq ¹⁸ F-FDG High-quality protocol	H3-PET	7.0	8.5
	Topogram		0.2	
	Diagnostic CT with CA	H3-D-CT	17.6	
	PET, 370 MBq ¹⁸ F-FDG	H3-PET	7.0	24.8
H4	Topogram		0.2	
	Low-dose CT	H4-LD-CT	2.4	
	PET, 370 MBq ^{1a} F-FDG	H4-PET	7.0	
	Diagnostic CT with CA	H4-D-CT	14.1	23.7

TABLE 2

Summary of Representative Protocols Used Routinely for Whole-Body ¹⁸F-FDG-PET/CT Examinations at 4 German Hospitals Equipped with the Dual-Modality Tomographs Characterized in Table 1

Whole-Body PET/CT Scanning: Estimation of Radiation Dose and Cancer Risk

Table 2

Huang et al , Radiology

able 2								
Parameter	s of the Three	CT Protocols						
CT Protocol	Tube Potential (kV)	Rotation Time (sec)	Section Thickness (mm)	Pitch	Tube Current (mA)	Noise Level*		
A	120	0.5	0.625	0.984	100-300	20		
B	120 140	0.5	0.625	0.984	250 150-350	3.5		
			Prot	000			Effective d	ose (mSv)
							Female	Male
			А				13.45	13.65
			В				24.79	24.80
			С				31.91	32.18

Lifetime cancer incidence with a diagnostic CT and PET would be 0.514% for US population and 0.622% for Hong Kong population (for patient age 20 yrs)

Image gently

Maintain as low pediatric radiation dose as possible

PET component

CT component

Pediatric dose calculation of RP's

TABLE 3

Administered Activity for Each Dose Formula According to Patient Age Compared with a Dosage Computer on a Straight Weight Basis

Age (y)	BSA	Webster	EANM Paediatric Dose card (2007 version (13))
1	194%	200%	136%
5	172%	300%	121%
10	133%	206%	113%
15	116%	140%	107%

Eur J Nucl Med Mol Imaging 2007; 34

Studies have shown higher dose in 1 yr olds as compared to teen using BSA and Websters formula.

FDG dosage

North American consensus guidelines American College of Radiology, Society of Pediatric Radiology, Society of Nuclear Medicine and Molecular Imaging (SNMMI)

TABLE 1

North American Consensus Guidelines for Administered Radiopharmaceutical Activities in Children and Adolescents*

Radiopharmaceutical	Recommended administered activity (based on weight only)	Minimum administered activity	Maximum administered activity	Comments
¹²³ I-MIBG	5.2 MBq/kg (0.14 mCi/kg)	37 MBq (1.0 mCi)	370 MBq (10.0 mCi)	EANM Paediatric Dose Card (2007 version (13)) may also be used in patients weighing more than 10 kg.
99mTc-MDP	9.3 MBq/kg (0.25 mCl/kg)	37 MBq (1.0 mCi)		EANM Paediatric Dose Card (2007 version (13)) may also be used.
^{to} F-FDG	Body, 3.7–5.2 MBq/kg (0.10–0.14 mCi/kg) Brain, 3.7 MBq/kg (0.10 mCi/kg)	37 MBq (1.0 mCi)		Low end of dose range should be considered for smaller patients. Administered activity may take into account patient mass and time available on PET scanner. EANM Paediatric Dose Card (2007 version (<i>13</i>)) may also be used.
^{99m} Tc-dimercaptosuccinic acid	1.85 MBq/kg (0.05 mCi/kg)	18.5 MBq (0.5 mCi)		
99mTc-MAG3	Without flow study, 3.7 MBq/kg (0.10 mCi/kg) With flow study, 5.55 MBq/kg (0.15 mCi/kg)	37 MBq (1.0 mCi)	148 MBq (4 mCi)	Administered activities at left assume that image data are reframed at 1 min/image. Administered activity may be reduced if image data are reframed at longer time per image. EANM Paediatric Dose Card (2007 version (<i>13</i>)) may also be used.

THE JOURNAL OF NUCLEAR MEDICINE • Vol. 52 • No. 2 • February 2011

Eur J Nucl Med Mol Imaging 2007; 34

EANM dose card

1 Multiples of the baseline activity

a)

Weight	Class	Class	Class	Weight	Class	Class	Class
kg	Α	В	С	kg	Α	В	С
3	1	1	1	32	3.77	7.29	14.00
4	1.12	1.14	1.33	34	3.88	7.72	15.00
6	1.47	1.71	2.00	36	4.00	8.00	16.00
8	1.71	2.14	3.00	38	4.18	8.43	17.00
10	1.94	2.71	3.67	40	4.29	8.86	18.00
12	2.18	3.14	4.67	42	4.41	9.14	19.00
14	2.35	3.57	5.67	44	4.53	9.57	20.00
16	2.53	4.00	6.33	46	4.65	10.00	21.00
18	2.71	4.43	7.33	48	4.77	10.29	22.00
20	2.88	4.86	8.33	50	4.88	10.71	23.00
22	3.06	5.29	9.33	52-54	5.00	11.29	24.67
24	3.18	5.71	10.00	56-58	5.24	12.00	26.67
26	3.35	6.14	11.00	60-62	5.47	12.71	28.67
28	3.47	6.43	12.00	64-66	5.65	13.43	31.00
30	3.65	6.86	13.00	68	5.77	14.00	32.33

Table 2	Recommended	amounts	for	39	procedures
---------	-------------	---------	-----	----	------------

Radiopharmaceutical	Class	Baseline Activity (for calculation purposes only) MBq	Minimum Recommended Activity ¹ MBq
123I (Thyroid)	С	0.6	3
123I Amphetamine (Brain)	В	13.0	18
123I HIPPURAN (Abnormal renal function)	В	5.3	10
123I HIPPURAN (Normal renal function)	А	12.8	10
123I mIBG	В	28.0	80
131I mlBG	В	5.6	35
18F FDG (2D)	В	25.9	70
18F FDG (3D), Recommended in children	В	14.0	70
18F Fluorine (2D)	В	25.9	70
18F Fluorine (3D), Recommended in children	В	14.0	70
⁶⁷ Ga Citrate	В	5.6	10
99=Tc ALBUMIN (Cardiac)	В	56.0	80
99=Tc COLLOID (Gastric Reflux)	В	2.8	10
99=Tc COLLOID (Liver/Spleen)	В	5.6	15
99mTc COLLOID (Marrow)	В	21.0	20

¹⁸F FDG (whole body, 3D acquisition), body weight: 50 kg: Activity to be administered [MBq]=14.0×10.71 [MBq] \approx 150 MBq

ple are weight- and radiopharmaceutical-dependent factors

Harmonization of American and EANM

1040		Eur J Nu	ucl Med Mol Ima	ging (2014) 41:1	036–1041	
Table 5 Activity values and effective doses for ¹⁸ F-FDG PET of		Age				
the torso (ICRP 106 [10])		1 year	5 years	10 years	15 years	Adult
	Nominal weight (kg)	10	19	32	55	70
	2007 EANM dosage card [1, 2]					
	Administered activity (MBq)	70	120	189	302	370
	Effective dose (mSv)	6.7	6.7	7.0	7.2	7.0
	North American consensus guideline	es [3]				
	Administered activity (MBq) ^a	51	99	166	286	364
^a 5.2 MBq/kg	Effective dose (mSv)	4.8	5.5	6.2	6.9	6.9

For 18F RP no change in EANM 2007 card Upper limit. For EU North American guidelines - lowest administered activity was 26MBq

Contribution of CT component

- Principle determinants of the dose a patient receives during a CT
- : X-ray beam energy (related to the peak kilovoltage)
- : X-ray beam intensity (milli amperes) or the number of xray photons generated (related to the product of the tube current and time).

Balance the mA and KvP factors and pitch. Protocols based on patient weight or age produce greater variability

Image gently protocol

Obtain Diagnostic reference level (DRL) and Size specific dose estimates (SSDE) for every scanner of department. Use the reference adjustments of mA and KvP based on tissue

DRL Parameters

Table 1(b	Table 1(b)Guidelines for multidetector row computed tomography parameters in children: Abdomen/pelvis ^a											
Weight Peak	Tube current ^b		Section	Pitch			Detector thickness ^c (mm)				Increment	
(kg)	kilovoltage	SDCT	MDCT	thickness (mm)	4-	8-	16, 64 ^d	4-	8-	16-	64-	(mm)
5-9.5	100-120	60	50	3.75–5	0.75	0.875	0.9375	2.5	1.25	1.25	0.625	2.5
10-19.5	100-120	70	60	3.75-5	0.75	0.875	0.9375	2.5	1.25	1.25	0.625	2.5
20-29.5	120	80	70	5	0.75-1.5	1.35	1.375	2.5	1.25	1.25	0.625	2.5
30-39.5	120	100	80	5	1.5	1.35	1.375	2.5	1.25	1.25	0.625	2.5
40-49.5	120	120	100	5	1.5	1.35	1.375	3.75	2.5	1.25	0.625	2.5
50-75	120	140-150	110-120	5	1.5	1.35	1.75	3.75	2.5	1.25	0.625	2.5
>75	120	≥170	≥135	5	1.5	1.35	1.75	3.75	2.5	1.25	0.625	2.5

^a Parameters are based on GE single and multi-detector row CT machines.

^b Use 0.5 s gantry time when an option; tube current are for four- and eight-section MDCT; 16-section weight-based colourcoded tube current are loaded on the machine.

^c For anticipated multiplanar reconstructions or three-dimensional rendering, use thinnest detector width (e.g. 0.625 mm) with 16-section at all ages.

^d For 64-section, pitch of approximately 1 under 20 kg, otherwise 1.375.

Clinical Radiology (2007) 62, 507-517

Automatic exposure control scanners

PRINCIPLE:

Changes dose based on the thickness and radiation attenuation of tissues along the length of the patient's body (Z axis). Or along the angle of tube

Automatic exposure control scanners

Proced	ure		mA Control		ľ	
Take a scar Decides the			Reference Noise Index	ise lex		
Decide	Later	al patient	Noise Index	mA	mA	
	width	ı (cm)	(at 0.5s)	(min)	(max)	
Decide	22.1	- 30	9	150	280	
II IOW N	30.1	- 40	11.5	220	500	
	40.1	- 45	14.5	400	720	
Problei Small r	45.1	-	17 (0.7s)	450	770	e nois
Large p radiation	oatie on de	nt – high i ose	mA – good i	image -	- unnec	essary

Automatic exposure control scanners

Table I: Summary of the four most common AEC strategies

Manufacturer	AEC Trade name	Image Quality Reference	Goal
General Electric	Auto mA, Smart mA	Noise Index	Constant image noise regardless of attenuation level, using tube currents within prescribed
Toshiba	SureExposure	Target Image Quality Level	minimum and maximum values.
Siemens	CARE Dose4D	Quality Reference Effective mAs	Constant image quality regardless of attenuation level, with reference to a target mAs level for a standard-sized patient.
Philips	DoseRight	Reference Image	Keep the same image quality as in the reference image, regardless of attenuation level.

Contribution of CT component

Choice of CT : Low mA & low Voltage : attenuation

Low mA & high voltage : anatomic localization

High mA and High Voltage : Dedicated CECT. : Characterization of lesion

Tube current - Some visible noise accepted

Rotation – 1 to 0.5 sec

Lower Voltage – Regions with inherent tissue contrast

Dedicated CT component

CECT useful for IDRF – complete staging in one scan -/

Non contrast low mA CT component

Recurrence of Wilms tumor

Low mA CT

Dedicated high mA CECT thorax

PET/CT protocols for attenuation and localization

TABLE 1. Pediatric Whole-Body PET/CT Protocols Highlighting Acquisition Settings Varied for Each Weight Category

	Patient						
		Estimated whole-body scan range (mm)	CT acquisition,	PET acquisition			
Category	Weight range (kg)		maximum tube current for CT (mAs)	Injected activity (MBq [mCi])	Scan time per FOV (min)		
Pink	6-7.4	59.5-66.5	10	37 (1.0)	3		
Red	7.5–9.4	66.5-74	10	45 (1.2)	3		
Purple	9.5–11.4	74-84.5	15	55 (1.5)	3		
Yellow	11.5–14.4	84.5-97.5	20	68 (1.9)	3		
White	14.5–18.4	97.5–110	20	87 (2.4)	3		
Blue	18.5-22.4	110–122	20	108 (2.9)	3		
Orange	22.5-31.4	122–137	25	142 (3.9)	5		
Green	31.5-40.5	137–150	30	190 (5.1)	5		
Black	40.5-55	150–162	30	252 (6.8)	5		
Small adult	55–70	162–170	35	330 (8.9)	5		
Large adult	>70	>170	40	370 (10.0)	5		

THE JOURNAL OF NUCLEAR MEDICINE • Vol. 50 • No. 10 • October 2009

Broselow luten colour scale

PET/CT protocols for attenuation and localization

TABLE 4. Estimated Dosimetry and Additional LAR of Cancer for Proposed PET/CT Protocols

Patient			Approximate effective dosimetry				Lifetime attributable risk			
	Weight				Total effective	Cancer incidence		Cancer mortality		
	range	Average	PET dose	CT dose	PET/CT dose		Females	Males	Females	Males
Category	(kg)	age	(mSv)	(mSv)	(mSv)	BERT (y)	(%)	(%)	(%)	(%)
Pink	6-7.4	4 mo	5.0	3.1	8.1	2.7	0.34	0.18	0.13	0.08
Red	7.5–9.4	8 mo	5.1	2.9	8.0	2.7	0.33	0.18	0.12	0.08
Purple	9.5–11.4	15 mo	5.1	4.1	9.2	3.1	0.36	0.19	0.13	0.08
Yellow	11.5–14.4	2.4 y	5.5	5.2	10.7	3.6	0.38	0.21	0.15	0.09
White	14.5–18.4	3.8 y	5.5	5.0	10.5	3.5	0.34	0.18	0.13	0.08
Blue	18.5–22.4	5.9 y	5.3	4.7	10.0	3.3	0.28	0.15	0.11	0.07
Orange	22.5-31.4	8.5 y	6.0	5.5	11.4	3.8	0.28	0.15	0.12	0.07
Green	31.5-40.5	10.1 y	6.6	6.3	12.8	4.3	0.29	0.16	0.12	0.08
Black	40.5–55	12.8 y	7.5	5.6	13.1	4.4	0.27	0.15	0.12	0.08
Small adult	55–70	15.0 y	7.6	5.9	13.5	4.5	0.25	0.14	0.11	0.07
Large adult	>70	20.0 y	7.0	5.9	12.9	4.3	0.19	0.11	0.09	0.06

Baseline LAR: cancer incidence for females is 36.9% and for males it is 45.5%; cancer mortality for females is 17.5% and for males it is 22.1%.

Tips to consider

Get Involved in acquisition and appointments

- Avoid multi phase acquisitions; post-contrast (single-phase study) is all that is necessary
- Reduce the values of the tube current and peak kilo - voltage used to obtain the scout image(s)
- Follow up scan limited to the appropriate body region.
- Shielding of radio sensitive organs eye lens, thyroid gland, and breast can be shielded using bismuth material.

Tips to consider

- Child friendly department
- Schedule early appointments shorter fasting
- Talk to the parent & CHILD.
- Show the machine

 Uptake period: read a book/TV/game

Acquisition:
 Parent allowed
 Can carry toy
 Play music or rhyme

Life comes from physical survival; but the good life comes from what we care about.

Rollo May

